Triphenylphosphine/Scandium(III) Trifluoromethanesulfonate: A New Agent for the Reformatsky Reaction of α-Bromo Carboxylic Acid Derivatives with Aldehydes Hirotaka Kagoshima, Yukihiko Hashimoto,* and Kazuhiko Saigo* Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Received 15 July 1998; revised 31 August 1998; accepted 4 September 1998 Abstract: The Ph₃P/Sc(OTf)₃ combination was found to be effective for the Reformatsky reaction; when α -bromo carboxylic acid derivatives were allowed to react with aldehydes in the presence of the Ph₃P/Sc(OTf)₃ combination, the corresponding β -hydroxy carboxylic acid derivatives were obtained in good yields with excellent diastereoselectivity. © 1998 Elsevier Science Ltd. All rights reserved. Recently, we have reported that a new reducing agent, a combination of Ph₃P and GeCl₄, was very useful for the reduction of various α -bromo carboxylic acid derivatives 1 under mild conditions (Scheme 1). The facile reduction of 1 by the Ph₃P/GeCl₄ combination would be attributed to the activation of the carbon-halogen bond in 1 upon coordination of GeCl₄ as a Lewis acid to their carbonyl oxygen. In this reaction, the formation of an intermediary germanium(IV) enolate 2 is plausible. Here, if 2 reacts with an aldehyde 4 instead of water as an electrophile, the Reformatsky reaction, giving β -hydroxy carboxylic acid derivatives 5, can be achieved. This hypothesis prompted us to apply the present reduction, using the Ph₃P/Lewis acid combination, to the synthetically useful Reformatsky reaction. Although a number of metals and low-valent metal compounds have been proved to promote the Reformatsky reaction until now,² there is no report on the Reformatsky reaction mediated by phosphorous(III) compounds, which act as reducing agents. Herein, we demonstrate that the Ph₃P/Sc(OTf)₃ combination can effectively mediate the Reformatsky reaction of α -bromo carboxylic acid derivatives with aldehydes. Scheme 1 O Ph₃P, GeCl₄ Br $$Ph_3P$$ Y = Cl, Br Ph_3PY_2 Scheme 1 O Reformatsky Reaction O Reformatsky Reaction Our initial study was focused on the Reformatsky reaction of α -bromo amide 1a with benzaldehyde (4a) using various Ph₃P/Lewis acid combinations (Table 1, entries 1-5). Of the Lewis acids examined, Sc(OTf)₃ was a quite excellent promoter with regard to both yield and diastereoselectivity (84% yield, syn:anti = 98:2, entry 5).⁴ Next, the Reformatsky reaction of various α -bromo carboxylic acid derivatives with aldehydes was carried out in the presence of the Ph₃P/Sc(OTf)₃ combination (entries 5-9).⁵ The reaction of 1a with nPrCHO (4b) in the presence of the Ph₃P/Sc(OTf)₃ combination also proceeded smoothly to give the corresponding β -hydroxy amide 5b in good yield with excellent syn-diastereoselectivity (entry 6). The substituents on the nitrogen atom in α -bromo amides strongly influenced the rate of the reduction; in contrast to the case of α -bromo amide 1a, the reduction of α -bromo amide 1b did not proceed in the presence of the Ph₃P/Sc(OTf)₃ combination, and no adduct 5b was obtained (entry 7). Although α -bromo ester 1c was not a good Reformatsky donor (entry 8), α -bromo imide 1d was readily reduced with the Ph₃P/Sc(OTf)₃ combination to give the corresponding β -hydroxy imide 5e in good yield with moderate anti-selectivity (entry 9). Table 1. The Reformatsky Reaction of α-Bromo Carboxylic Acid Derivatives 1 with Aldehydes 4 in the Presence of the Ph₃P/Lewis Acid Combination ^aA; 4:1:Ph₃P:Lewis acid = 1:2:2:2. B; 4:1:Ph₃P:Lewis acid = 1:1.2:1.2:1.2. ^bIsolated yields. ^cDetermined by 300 MHz ¹H NMR. ^dDetermined by GC analysis of the trimethylsilylated adducts.³ In summary, the combination of Ph₃P and Sc(OTf)₃ was found to be a new, efficient reducing agent for the Reformatsky reaction. Further investigation on the extension of the present reaction and the mechanism is currently in progress. ## REFERENCES AND NOTES - 1. Kagoshima, H.; Hashimoto, Y.; Oguro, D.; Kutsuna, T.; Saigo, K. Tetrahedron Lett. 1998, 39, 1203-1206. - 2. Rathke, M. W.; Weipert, P. In *Comprehensive Organic Synthesis*; Heathcock, C. H. Ed.; Pergamon Press: Oxford, 1991; Vol. 2, pp. 277-299 and references therein. - 3. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83-91. - 4. The use of other Lewis acids, such as TMSOTf, GeCl₄, SnCl₄, Et₃AlCl, GaCl₃, ZnCl₂•OEt₂, resulted in the formation of the corresponding adduct 5a only in low yields (0-22%) under the condition A. - 5. General Procedure for the Reformatsky Reaction (Table 1, entry 5): To a suspension of Sc(OTf)3 (265 mg, 0.54 mmol), predried at 150 °C for 6 h under reduced pressure, in CH₂Cl₂ (2 mL) were successively added dropwise 1a (164 mg, 0.54 mmol) in CH₂Cl₂ (1 mL), Ph₃P (141 mg, 0.54 mmol) in CH₂Cl₂ (1 mL), and 4a (48 mg, 0.45 mmol) in CH₂Cl₂ (1 mL) at room temperature. The resulting mixture was stirred for 15 h at the temperature. The reaction was quenched with water (5 mL), and the resultant mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined CH₂Cl₂ extracts were washed with brine (1 × 10 mL) and dried over MgSO₄. The organic solution was concentrated under reduced pressure, and the residue was filtered through a silica gel short plug (hexane/AcOEt = 2/1) to remove Ph₃P=O. The filtrate was concentrated, and the crude product was purified by PTLC (SiO₂, hexane/AcOEt = 5/1) to give 5a (126 mg, 84%, syn:anti = 98:2). Syn-isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.5-7.1 (m, 15H), 5.09 (d, 1H, J = 4.4 Hz), 3.82 (bs, 1H), 2.84 (dq, 1H, J = 4.4 and 7.0 Hz), 1.28 (d, 3H, J = 7.0 Hz); IR (neat) 3440, 1650, 1600, 1500 cm⁻¹. Anti-isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.5-6.7 (m, 15H), 4.79 (d, 1H, J = 8.4 Hz), 4.71 (dd, 1H, J = 4.3 and 8.4 Hz), 2.85 (dq, 1H, J = 4.3 and 7.0 Hz), 1.37 (d, 3H, J = 7.0 Hz); IR (neat) 3430, 1645, 1595, 1495 cm⁻¹. The diastereomer ratio was determined on the basis of the ¹H NMR integration ratio of the CHOH regions. The relative configuration of syn- and anti-isomers was determined on the basis of their ¹H NMR chemical shifts of the CHOH protons in comparison with the values of analogous amides in the literature.⁶ - 6. (a) Fujita, M.; Hiyama, T. J. Org. Chem. 1988, 53, 5405-5415. (b) Fujita, M.; Hiyama, T. J. Org. Chem. 1988, 53, 5415-5421.